50 research outputs found

    Unified Behavior Framework for Reactive Robot Control in Real-Time Systems

    Get PDF
    Endeavors in mobile robotics focus on developing autonomous vehicles that operate in dynamic and uncertain environments. By reducing the need for human-in- the-loop control, unmanned vehicles are utilized to achieve tasks considered dull or dangerous by humans. Because unexpected latency can adversely affect the quality of an autonomous system\u27s operations, which in turn can affect lives and property in the real-world, their ability to detect and handle external events is paramount to providing safe and dependable operation. Behavior-based systems form the basis of autonomous control for many robots. This thesis presents the unified behavior framework, a new and novel approach which incorporates the critical ideas and concepts of the existing reactive controllers in an effort to simplify development without locking the system developer into using any single behavior system. The modular design of the framework is based on modern software engineering principles and only specifies a functional interface for components, leaving the implementation details to the developers. In addition to its use of industry standard techniques in the design of reactive controllers, the unified behavior framework guarantees the responsiveness of routines that are critical to the vehicle\u27s safe operation by allowing individual behaviors to be scheduled by a real-time process controller. The experiments in this thesis demonstrate the ability of the framework to: 1) interchange behavioral components during execution to generate various global behavior attributes; 2) apply genetic programming techniques to automate the discovery of effective structures for a domain that are up to 122 percent better than those crafted by an expert; and 3) leverage real-time scheduling technologies to guarantee the responsiveness of time critical routines regardless of the system\u27s computational load

    Novelty-assisted Interactive Evolution Of Control Behaviors

    Get PDF
    The field of evolutionary computation is inspired by the achievements of natural evolution, in which there is no final objective. Yet the pursuit of objectives is ubiquitous in simulated evolution because evolutionary algorithms that can consistently achieve established benchmarks are lauded as successful, thus reinforcing this paradigm. A significant problem is that such objective approaches assume that intermediate stepping stones will increasingly resemble the final objective when in fact they often do not. The consequence is that while solutions may exist, searching for such objectives may not discover them. This problem with objectives is demonstrated through an experiment in this dissertation that compares how images discovered serendipitously during interactive evolution in an online system called Picbreeder cannot be rediscovered when they become the final objective of the very same algorithm that originally evolved them. This negative result demonstrates that pursuing an objective limits evolution by selecting offspring only based on the final objective. Furthermore, even when high fitness is achieved, the experimental results suggest that the resulting solutions are typically brittle, piecewise representations that only perform well by exploiting idiosyncratic features in the target. In response to this problem, the dissertation next highlights the importance of leveraging human insight during search as an alternative to articulating explicit objectives. In particular, a new approach called novelty-assisted interactive evolutionary computation (NA-IEC) combines human intuition with a method called novelty search for the first time to facilitate the serendipitous discovery of agent behaviors. iii In this approach, the human user directs evolution by selecting what is interesting from the on-screen population of behaviors. However, unlike in typical IEC, the user can then request that the next generation be filled with novel descendants, as opposed to only the direct descendants of typical IEC. The result of such an approach, unconstrained by a priori objectives, is that it traverses key stepping stones that ultimately accumulate meaningful domain knowledge. To establishes this new evolutionary approach based on the serendipitous discovery of key stepping stones during evolution, this dissertation consists of four key contributions: (1) The first contribution establishes the deleterious effects of a priori objectives on evolution. The second (2) introduces the NA-IEC approach as an alternative to traditional objective-based approaches. The third (3) is a proof-of-concept that demonstrates how combining human insight with novelty search finds solutions significantly faster and at lower genomic complexities than fully-automated processes, including pure novelty search, suggesting an important role for human users in the search for solutions. Finally, (4) the NA-IEC approach is applied in a challenge domain wherein leveraging human intuition and domain knowledge accelerates the evolution of solutions for the nontrivial octopus-arm control task. The culmination of these contributions demonstrates the importance of incorporating human insights into simulated evolution as a means to discovering better solutions more rapidly than traditional approaches

    Genetic Evolution of Hierarchical Behavior Structures

    Get PDF
    The development of coherent and dynamic behaviors for mobile robots is an exceedingly complex endeavor ruled by task objectives, environmental dynamics and the interactions within the behavior structure. This paper discusses the use of genetic programming techniques and the unified behavior framework to develop effective control hierarchies using interchangeable behaviors and arbitration components. Given the number of possible variations provided by the framework, evolutionary programming is used to evolve the overall behavior design. Competitive evolution of the behavior population incrementally develops feasible solutions for the domain through competitive ranking. By developing and implementing many simple behaviors independently and then evolving a complex behavior structure suited to the domain, this approach allows for the reuse of elemental behaviors and eases the complexity of development for a given domain. Additionally, this approach has the ability to locate a behavior structure which a developer may not have previously considered, and whose ability exceeds expectations. The evolution of the behavior structure is demonstrated using agents in the Robocode environment, with the evolved structures performing up to 122 percent better than one crafted by an expert

    Unified Behavior Framework for Reactive Robot Control

    Get PDF
    Behavior-based systems form the basis of autonomous control for many robots. In this article, we demonstrate that a single software framework can be used to represent many existing behavior based approaches. The unified behavior framework presented, incorporates the critical ideas and concepts of the existing reactive controllers. Additionally, the modular design of the behavior framework: (1) simplifies development and testing; (2) promotes the reuse of code; (3) supports designs that scale easily into large hierarchies while restricting code complexity; and (4) allows the behavior based system developer the freedom to use the behavior system they feel will function the best. When a hybrid or three layer control architecture includes the unified behavior framework, a common interface is shared by all behaviors, leaving the higher order planning and sequencing elements free to interchange behaviors during execution to achieve high level goals and plans. The framework\u27s ability to compose structures from independent elements encourages experimentation and reuse while isolating the scope of troubleshooting to the behavior composition. The ability to use elemental components to build and evaluate behavior structures is demonstrated using the Robocode simulation environment. Additionally, the ability of a reactive controller to change its active behavior during execution is shown in a goal seeking robot implementation

    On the Quantum Theory of Molecules

    Full text link
    Transition state theory was introduced in the 1930s to account for chemical reactions. Central to this theory is the idea of a potential energy surface (PES). It was assumed that such a surface could be constructed using eigensolutions of the Schr\"{o}dinger equation for the molecular (Coulomb) Hamiltonian but at that time such calculations were not possible. Nowadays quantum mechanical ab-initio electronic structure calculations are routine and from their results PESs can be constructed which are believed to approximate those assumed derivable from the eigensolutions. It is argued here that this belief is unfounded. It is suggested that the potential energy surface construction is more appropriately regarded as a legitimate and effective modification of quantum mechanics for chemical purpose

    CPPN2GAN: Combining Compositional Pattern Producing Networks and GANs for Large-Scale Pattern Generation

    Get PDF
    Generative Adversarial Networks (GANs) are proving to be a powerful indirect genotype-to-phenotype mapping for evolutionary search, but they have limitations. In particular, GAN output does not scale to arbitrary dimensions, and there is no obvious way of combining multiple GAN outputs into a cohesive whole, which would be useful in many areas, such as the generation of video game levels. Game levels often consist of several segments, sometimes repeated directly or with variation, organized into an engaging pattern. Such patterns can be produced with Compositional Pattern Producing Networks (CPPNs). Specifically, a CPPN can define latent vector GAN inputs as a function of geometry, which provides a way to organize level segments output by a GAN into a complete level. This new CPPN2GAN approach is validated in both Super Mario Bros. and The Legend of Zelda. Specifically, divergent search via MAP-Elites demonstrates that CPPN2GAN can better cover the space of possible levels. The layouts of the resulting levels are also more cohesive and aesthetically consistent.Comment: GECCO 2020. arXiv admin note: text overlap with arXiv:2004.0015

    Trends in detectable viral load by calendar year in the Australian HIV observational database

    Get PDF
    Background Recent papers have suggested that expanded combination antiretroviral treatment (cART) through lower viral load may be a strategy to reduce HIV transmission at a population level. We assessed calendar trends in detectable viral load in patients recruited to the Australian HIV Observational Database who were receiving cART. Methods Patients were included in analyses if they had started cART (defined as three or more antiretrovirals) and had at least one viral load assessment after 1 January 1997. We analyzed detectable viral load (>400 copies/ml) in the first and second six months of each calendar year while receiving cART. Repeated measures logistic regression methods were used to account for within and between patient variability. Rates of detectable viral load were predicted allowing for patients lost to follow up. Results Analyses were based on 2439 patients and 31,339 viral load assessments between 1 January 1997 and 31 March 2009. Observed detectable viral load in patients receiving cART declined to 5.3% in the first half of 2009. Predicted detectable viral load based on multivariate models, allowing for patient loss to follow up, also declined over time, but at higher levels, to 13.8% in 2009. Conclusions Predicted detectable viral load in Australian HIV Observational Database patients receiving cART declined over calendar time, albeit at higher levels than observed. However, over this period, HIV diagnoses and estimated HIV incidence increased in Australia

    Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States

    Get PDF
    Increasing fire severity and warmer, drier postfire conditions are making forests in the western United States (West) vulnerable to ecological transformation. Yet, the relative importance of and interactions between these drivers of forest change remain unresolved, particularly over upcoming decades. Here, we assess how the interactive impacts of changing climate and wildfire activity influenced conifer regeneration after 334 wildfires, using a dataset of postfire conifer regeneration from 10,230 field plots. Our findings highlight declining regeneration capacity across the West over the past four decades for the eight dominant conifer species studied. Postfire regeneration is sensitive to high-severity fire, which limits seed availability, and postfire climate, which influences seedling establishment. In the near-term, projected differences in recruitment probability between low- and high-severity fire scenarios were larger than projected climate change impacts for most species, suggesting that reductions in fire severity, and resultant impacts on seed availability, could partially offset expected climate-driven declines in postfire regeneration. Across 40 to 42% of the study area, we project postfire conifer regeneration to be likely following low-severity but not high-severity fire under future climate scenarios (2031 to 2050). However, increasingly warm, dry climate conditions are projected to eventually outweigh the influence of fire severity and seed availability. The percent of the study area considered unlikely to experience conifer regeneration, regardless of fire severity, increased from 5% in 1981 to 2000 to 26 to 31% by mid-century, highlighting a limited time window over which management actions that reduce fire severity may effectively support postfire conifer regeneration. © 2023 the Author(s)

    Molecular structure calculations without clamping the nuclei

    No full text
    info:eu-repo/semantics/publishe
    corecore